Copied to
clipboard

G = C23.592C24order 128 = 27

309th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.592C24, C24.399C23, C22.2722- 1+4, C22.3662+ 1+4, C4⋊C413D4, (C2×D4)⋊5Q8, C2.28(D4×Q8), C23.33(C2×Q8), C23⋊Q844C2, C2.97(D45D4), C2.49(D43Q8), C23.4Q843C2, C23.7Q886C2, C23.Q857C2, (C2×C42).646C22, (C23×C4).456C22, (C22×C4).872C23, C23.8Q8104C2, C2.14(C232Q8), C22.401(C22×D4), C22.144(C22×Q8), C23.23D4.51C2, (C22×D4).229C22, (C22×Q8).183C22, C23.81C2383C2, C23.78C2344C2, C23.67C2380C2, C2.57(C22.29C24), C24.3C22.60C2, C23.63C23132C2, C2.C42.299C22, C2.72(C22.36C24), C2.13(C22.56C24), (C2×C4).96(C2×D4), (C2×C4).68(C2×Q8), (C2×C22⋊Q8)⋊39C2, (C2×C4).423(C4○D4), (C2×C4⋊C4).406C22, C22.454(C2×C4○D4), (C2×C22⋊C4).259C22, SmallGroup(128,1424)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.592C24
C1C2C22C23C22×C4C23×C4C23.7Q8 — C23.592C24
C1C23 — C23.592C24
C1C23 — C23.592C24
C1C23 — C23.592C24

Generators and relations for C23.592C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=1, e2=g2=cb=bc, ab=ba, gag-1=ac=ca, ad=da, ae=ea, faf=acd, bd=db, geg-1=be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, fef=de=ed, df=fd, dg=gd, gfg-1=cdf >

Subgroups: 548 in 268 conjugacy classes, 104 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C22⋊Q8, C23×C4, C22×D4, C22×Q8, C23.7Q8, C23.8Q8, C23.23D4, C23.63C23, C24.3C22, C23.67C23, C23⋊Q8, C23.78C23, C23.Q8, C23.81C23, C23.4Q8, C2×C22⋊Q8, C23.592C24
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C24, C22×D4, C22×Q8, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.29C24, C22.36C24, C232Q8, D45D4, D4×Q8, D43Q8, C22.56C24, C23.592C24

Smallest permutation representation of C23.592C24
On 64 points
Generators in S64
(5 50)(6 51)(7 52)(8 49)(9 38)(10 39)(11 40)(12 37)(13 47)(14 48)(15 45)(16 46)(17 61)(18 62)(19 63)(20 64)(21 34)(22 35)(23 36)(24 33)(25 29)(26 30)(27 31)(28 32)
(1 41)(2 42)(3 43)(4 44)(5 62)(6 63)(7 64)(8 61)(9 23)(10 24)(11 21)(12 22)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(25 31)(26 32)(27 29)(28 30)(33 39)(34 40)(35 37)(36 38)(53 59)(54 60)(55 57)(56 58)
(1 43)(2 44)(3 41)(4 42)(5 64)(6 61)(7 62)(8 63)(9 21)(10 22)(11 23)(12 24)(13 47)(14 48)(15 45)(16 46)(17 51)(18 52)(19 49)(20 50)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(53 57)(54 58)(55 59)(56 60)
(1 57)(2 58)(3 59)(4 60)(5 20)(6 17)(7 18)(8 19)(9 38)(10 39)(11 40)(12 37)(13 27)(14 28)(15 25)(16 26)(21 34)(22 35)(23 36)(24 33)(29 45)(30 46)(31 47)(32 48)(41 55)(42 56)(43 53)(44 54)(49 63)(50 64)(51 61)(52 62)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 17)(2 7)(3 19)(4 5)(6 57)(8 59)(9 47)(10 32)(11 45)(12 30)(13 21)(14 35)(15 23)(16 33)(18 58)(20 60)(22 28)(24 26)(25 36)(27 34)(29 40)(31 38)(37 46)(39 48)(41 49)(42 64)(43 51)(44 62)(50 56)(52 54)(53 61)(55 63)
(1 15 3 13)(2 48 4 46)(5 24 7 22)(6 11 8 9)(10 64 12 62)(14 42 16 44)(17 40 19 38)(18 35 20 33)(21 61 23 63)(25 59 27 57)(26 54 28 56)(29 55 31 53)(30 58 32 60)(34 51 36 49)(37 52 39 50)(41 47 43 45)

G:=sub<Sym(64)| (5,50)(6,51)(7,52)(8,49)(9,38)(10,39)(11,40)(12,37)(13,47)(14,48)(15,45)(16,46)(17,61)(18,62)(19,63)(20,64)(21,34)(22,35)(23,36)(24,33)(25,29)(26,30)(27,31)(28,32), (1,41)(2,42)(3,43)(4,44)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(25,31)(26,32)(27,29)(28,30)(33,39)(34,40)(35,37)(36,38)(53,59)(54,60)(55,57)(56,58), (1,43)(2,44)(3,41)(4,42)(5,64)(6,61)(7,62)(8,63)(9,21)(10,22)(11,23)(12,24)(13,47)(14,48)(15,45)(16,46)(17,51)(18,52)(19,49)(20,50)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(53,57)(54,58)(55,59)(56,60), (1,57)(2,58)(3,59)(4,60)(5,20)(6,17)(7,18)(8,19)(9,38)(10,39)(11,40)(12,37)(13,27)(14,28)(15,25)(16,26)(21,34)(22,35)(23,36)(24,33)(29,45)(30,46)(31,47)(32,48)(41,55)(42,56)(43,53)(44,54)(49,63)(50,64)(51,61)(52,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,17)(2,7)(3,19)(4,5)(6,57)(8,59)(9,47)(10,32)(11,45)(12,30)(13,21)(14,35)(15,23)(16,33)(18,58)(20,60)(22,28)(24,26)(25,36)(27,34)(29,40)(31,38)(37,46)(39,48)(41,49)(42,64)(43,51)(44,62)(50,56)(52,54)(53,61)(55,63), (1,15,3,13)(2,48,4,46)(5,24,7,22)(6,11,8,9)(10,64,12,62)(14,42,16,44)(17,40,19,38)(18,35,20,33)(21,61,23,63)(25,59,27,57)(26,54,28,56)(29,55,31,53)(30,58,32,60)(34,51,36,49)(37,52,39,50)(41,47,43,45)>;

G:=Group( (5,50)(6,51)(7,52)(8,49)(9,38)(10,39)(11,40)(12,37)(13,47)(14,48)(15,45)(16,46)(17,61)(18,62)(19,63)(20,64)(21,34)(22,35)(23,36)(24,33)(25,29)(26,30)(27,31)(28,32), (1,41)(2,42)(3,43)(4,44)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(25,31)(26,32)(27,29)(28,30)(33,39)(34,40)(35,37)(36,38)(53,59)(54,60)(55,57)(56,58), (1,43)(2,44)(3,41)(4,42)(5,64)(6,61)(7,62)(8,63)(9,21)(10,22)(11,23)(12,24)(13,47)(14,48)(15,45)(16,46)(17,51)(18,52)(19,49)(20,50)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(53,57)(54,58)(55,59)(56,60), (1,57)(2,58)(3,59)(4,60)(5,20)(6,17)(7,18)(8,19)(9,38)(10,39)(11,40)(12,37)(13,27)(14,28)(15,25)(16,26)(21,34)(22,35)(23,36)(24,33)(29,45)(30,46)(31,47)(32,48)(41,55)(42,56)(43,53)(44,54)(49,63)(50,64)(51,61)(52,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,17)(2,7)(3,19)(4,5)(6,57)(8,59)(9,47)(10,32)(11,45)(12,30)(13,21)(14,35)(15,23)(16,33)(18,58)(20,60)(22,28)(24,26)(25,36)(27,34)(29,40)(31,38)(37,46)(39,48)(41,49)(42,64)(43,51)(44,62)(50,56)(52,54)(53,61)(55,63), (1,15,3,13)(2,48,4,46)(5,24,7,22)(6,11,8,9)(10,64,12,62)(14,42,16,44)(17,40,19,38)(18,35,20,33)(21,61,23,63)(25,59,27,57)(26,54,28,56)(29,55,31,53)(30,58,32,60)(34,51,36,49)(37,52,39,50)(41,47,43,45) );

G=PermutationGroup([[(5,50),(6,51),(7,52),(8,49),(9,38),(10,39),(11,40),(12,37),(13,47),(14,48),(15,45),(16,46),(17,61),(18,62),(19,63),(20,64),(21,34),(22,35),(23,36),(24,33),(25,29),(26,30),(27,31),(28,32)], [(1,41),(2,42),(3,43),(4,44),(5,62),(6,63),(7,64),(8,61),(9,23),(10,24),(11,21),(12,22),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(25,31),(26,32),(27,29),(28,30),(33,39),(34,40),(35,37),(36,38),(53,59),(54,60),(55,57),(56,58)], [(1,43),(2,44),(3,41),(4,42),(5,64),(6,61),(7,62),(8,63),(9,21),(10,22),(11,23),(12,24),(13,47),(14,48),(15,45),(16,46),(17,51),(18,52),(19,49),(20,50),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(53,57),(54,58),(55,59),(56,60)], [(1,57),(2,58),(3,59),(4,60),(5,20),(6,17),(7,18),(8,19),(9,38),(10,39),(11,40),(12,37),(13,27),(14,28),(15,25),(16,26),(21,34),(22,35),(23,36),(24,33),(29,45),(30,46),(31,47),(32,48),(41,55),(42,56),(43,53),(44,54),(49,63),(50,64),(51,61),(52,62)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,17),(2,7),(3,19),(4,5),(6,57),(8,59),(9,47),(10,32),(11,45),(12,30),(13,21),(14,35),(15,23),(16,33),(18,58),(20,60),(22,28),(24,26),(25,36),(27,34),(29,40),(31,38),(37,46),(39,48),(41,49),(42,64),(43,51),(44,62),(50,56),(52,54),(53,61),(55,63)], [(1,15,3,13),(2,48,4,46),(5,24,7,22),(6,11,8,9),(10,64,12,62),(14,42,16,44),(17,40,19,38),(18,35,20,33),(21,61,23,63),(25,59,27,57),(26,54,28,56),(29,55,31,53),(30,58,32,60),(34,51,36,49),(37,52,39,50),(41,47,43,45)]])

32 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4N4O···4T
order12···222224···44···4
size11···144444···48···8

32 irreducible representations

dim111111111111122244
type++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2C2C2C2D4Q8C4○D42+ 1+42- 1+4
kernelC23.592C24C23.7Q8C23.8Q8C23.23D4C23.63C23C24.3C22C23.67C23C23⋊Q8C23.78C23C23.Q8C23.81C23C23.4Q8C2×C22⋊Q8C4⋊C4C2×D4C2×C4C22C22
# reps111211121111244431

Matrix representation of C23.592C24 in GL6(𝔽5)

100000
010000
001000
000400
000010
000004
,
400000
040000
001000
000100
000010
000001
,
100000
010000
004000
000400
000010
000001
,
100000
010000
001000
000100
000040
000004
,
020000
200000
002000
000200
000040
000001
,
100000
010000
000400
004000
000001
000010
,
010000
400000
000400
001000
000040
000001

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,2,0,0,0,0,2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1] >;

C23.592C24 in GAP, Magma, Sage, TeX

C_2^3._{592}C_2^4
% in TeX

G:=Group("C2^3.592C2^4");
// GroupNames label

G:=SmallGroup(128,1424);
// by ID

G=gap.SmallGroup(128,1424);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,112,253,344,758,723,1571,346,80]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=1,e^2=g^2=c*b=b*c,a*b=b*a,g*a*g^-1=a*c=c*a,a*d=d*a,a*e=e*a,f*a*f=a*c*d,b*d=d*b,g*e*g^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,f*e*f=d*e=e*d,d*f=f*d,d*g=g*d,g*f*g^-1=c*d*f>;
// generators/relations

׿
×
𝔽